Discontinuous Galerkin Method for Atmospheric Modeling

Ram Nair

(rnair@ucar.edu)

Scientific Computing Division (NCAR)

April 26, 2005

Discontinuous Galerkin Method (DGM)

- Motivation
- DGM in Cartesian Geometry
 - DGM in 1D (Algorithm)
 - Modal & Nodal versions
- Extension of DGM to 2D
 - Cartesian Geometry
 - Spherical Geometry (Cubed-Sphere)
- Flux form SW Model
- Numerical experiments & Results
- Parallel Implementation
- Summary

DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.

- DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.
- Advantage:

- DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.
- Advantage:
 - Inherently conservative (Monotonic option)

- DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.
- Advantage:
 - Inherently conservative (Monotonic option)
 - High-order accuracy & High parallel efficiency

DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.

Advantage:

- Inherently conservative (Monotonic option)
- High-order accuracy & High parallel efficiency
- "Local" method & AMR capable

- DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.
- Advantage:
 - Inherently conservative (Monotonic option)
 - High-order accuracy & High parallel efficiency
 - "Local" method & AMR capable
- Potential: Application in climate and atmospheric chemistry modeling, and NH modeling.

- DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.
- Advantage:
 - Inherently conservative (Monotonic option)
 - High-order accuracy & High parallel efficiency
 - "Local" method & AMR capable
- Potential: Application in climate and atmospheric chemistry modeling, and NH modeling.
- Popular in CFD and other engineering applications (Cockburn and Shu 1989-98).

- DGM may be considered as a hybrid approach combining the finite-volume and finite-element methods.
- Advantage:
 - Inherently conservative (Monotonic option)
 - High-order accuracy & High parallel efficiency
 - "Local" method & AMR capable
- Potential: Application in climate and atmospheric chemistry modeling, and NH modeling.
- Popular in CFD and other engineering applications (Cockburn and Shu 1989-98).
- Global SW model: Giraldo et al. (JCP, 2002); Nair, Thomas & Loft (MWR, 2005).

DGM in 1D

1D scalar conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0 \quad \text{in} \quad \Omega \times (0, T),$$
 with initial condition $U_0(x) = U(x, t = 0), \quad \forall x \in \Omega$

• The domain Ω (periodic) is partitioned into N_x non-overlapping elements (intervals)

$$I_j = [x_{j-1/2}, x_{j+1/2}]$$
, $j = 1, \dots, N_x$, and $\Delta x_j = (x_{j+1/2} - x_{j-1/2})$

DGM-1D: Weak Formulation

• A weak formulation of the problem is obtained by multiplying the PDE by a *test* function $\varphi(x)$ and integrating over an element I_j :

$$\int_{I_i} \left[\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} \right] \varphi(x) dx = 0.$$

Integrating the second term by parts \implies

$$\int_{I_{j}} \frac{\partial U(x,t)}{\partial t} \varphi(x) dx - \int_{I_{j}} F(U(x,t)) \frac{\partial \varphi(x)}{\partial x} dx + F(U(x_{j+1/2},t)) \varphi(x_{j+1/2}^{-}) - F(U(x_{j-1/2},t)) \varphi(x_{j-1/2}^{+}) = 0,$$

where $\varphi(x^-)$ and $\varphi(x^+)$ denote "left" and "right" limits

DGM-1D: Flux term

- Flux function F(U) is not uniquely defined at $x_{j\pm 1/2}$
- F(U) is replaced by a numerical flux function $\hat{F}(U)$, dependent on the left and right limits of the discontinuous function U. At the interface $x_{j+1/2}$,

$$\hat{F}(U)_{j+1/2}(t) = \hat{F}(U(x_{j+1/2}^-, t), U(x_{j+1/2}^+, t))$$

Typical flux formulae: Gudunov, Lax-Friedrichs, Roe, HLLC, etc.

DGM-1D: LF Flux

For the present study, Lax-Friedrichs numerical flux is used:

$$\hat{F}(a,b) = \frac{1}{2} \left[F(a) + F(b) - \overline{\alpha}(b-a) \right],$$

where $\overline{\alpha}$ is the upper bound on |F'(U)|.

- Space discretization:
 - Let V_h^k be a finite dimensional space such that $V_h^k = \{p: p|_{I_j} \in \mathbb{P}_k(I_j)\}$ where $\mathbb{P}_k(I_j)$ is the space of polynomials in I_j of degree at most k, $\forall j = 1, \ldots, N_x$.
- The approximate solution $U_h(x,t) \approx U(x,t)$ and the test function $\varphi_h = \varphi$ are in V_h^k .

DGM-1D: Space Discretization

$$\int_{I_j} \frac{\partial U_h(x,t)}{\partial t} \varphi_h(x) dx = \int_{I_j} F(U_h(x,t)) \frac{\partial \varphi_h(x)}{\partial x} dx - \left[\hat{F}(U_h)_{j+1/2}(t) \varphi_h(x_{j+1/2}^-) + \hat{F}(U_h)_{j-1/2}(t) \varphi_h(x_{j-1/2}^+) \right],$$

- Choose an orthogonal basis set spanning the space V_h^k . A set of Legendre polynomials, $\mathcal{B} = \{P_\ell(\xi), \ell = 0, 1, \dots, k\}$ is a good compramise between accuracy and efficiency.
- Use a high-order Gaussian quadrature rule to evaluate the integrals, and that defines the computational grid.
- For the present study, the Gauss-Lobatto-Legendre (GLL) quadrature rule is employed.

DGM-1D: Space Discretization

- Map every element I_j onto the reference element [-1,+1].
- Introduce a local coordinate $\xi \in [-1, +1]$ s.t.,

$$\xi = \frac{2(x - x_j)}{\Delta x_j}, \ x_j = (x_{j-1/2} + x_{j+1/2})/2 \Rightarrow \frac{\partial}{\partial x} = \frac{2}{\Delta x_j} \frac{\partial}{\partial \xi}.$$

Regular Element

 $X_{j-1/2}$ $X_{j+1/2}$

Reference Element

DGM-1D: Discretization (Modal)

• For every element I_j , the approximate solution $U_j(\xi, t)$, can be expressed in terms of the variable ξ :

$$U_j(\xi, t) = \sum_{\ell=0}^k U_j^{\ell}(t) P_{\ell}(\xi) \quad \text{for} \quad \xi \in [-1, 1], \quad \text{where}$$

$$U_j^{\ell}(t) = \frac{2\ell+1}{2} \int_{-1}^1 U_j(\xi, t) P_{\ell}(\xi) d\xi \quad \ell = 0, 1, \dots, k.$$

By using the properties of the Legendre polynomials

$$\int_{-1}^{1} P_{\ell}(\xi) P_{m}(\xi) d\xi = \frac{2}{2\ell + 1} \delta_{\ell m}, \quad \text{and}$$

$$P_{\ell}(1) = 1$$
, $P_{\ell}(-1) = (-1)^{\ell}$

DGM-1D: ODE (Modal)

Semi-discretized form ⇒

$$\frac{d}{dt} U_j^{\ell}(t) = \frac{2\ell + 1}{\Delta x_j} \left[\int_{-1}^1 F(U_j(\xi, t)) \frac{\partial P_{\ell}(\xi)}{\partial \xi} d\xi - \left[\hat{F}(U_j(1))(t) - (-1)^{\ell} \hat{F}(U_j(-1))(t) \right] \right]$$

- Map from spectral to physical space $(U_j^{\ell}(t) \Rightarrow U_j(t))$
- The final approximation can be expressed as

$$\frac{d}{dt}U_j = \mathcal{L}(U_j) \quad \text{in} \quad (0, T)$$

DGM-1D: Modal Vs Nodal

• The nodal basis set is constructed using Lagrange-Legendre polynomials $(h_i(\xi))$ with roots at Gauss-Lobatto quadrature points.

$$U_{j}(\xi) = \sum_{j=0}^{k} U_{j} h_{j}(\xi) \quad \text{for} \quad -1 \le \xi \le 1,$$

$$h_{j}(\xi) = \frac{(\xi^{2} - 1) P'_{k}(\xi)}{k(k+1) P_{k}(\xi_{j}) (\xi - \xi_{j})}.$$

Semi-discretized form ⇒

$$\frac{d}{dt}U_j = \mathcal{L}(U_j) \quad \text{in} \quad (0, T)$$

Modal vs Nodal

1D basis function for an expansion of order ${\cal N}=4$

Nodal Basis

Time Integration

Total variation diminishing third-order Runge-Kutta (TVD-RK) scheme (Gottlieb et al., 2001)

$$U^{(1)} = U^{n} + \Delta t \mathcal{L}(U^{n})$$

$$U^{(2)} = \frac{3}{4}U^{n} + \frac{1}{4}U^{(1)} + \frac{1}{4}\Delta t \mathcal{L}(U^{(1)})$$

$$U^{n+1} = \frac{1}{3}U^{n} + \frac{2}{3}U^{(2)} + \frac{2}{3}\Delta t \mathcal{L}(U^{(2)}).$$

where the superscripts n and n+1 denote time levels t and $t+\Delta t$, respectively

Note: The Courant number for the DG scheme is estimated to be 1/(2k+1), where k is the degree of the polynomial, however, no theoretical proof exists when k > 1 (Cockburn and Shu, 1989).

DG-1D: Numerical Examples

 $U_t + F_x(U) = 0$, $\Omega \equiv [-1, 1]$, periodic domain. For linear advection (Gaussian-hill) F(U) = U, and for the Burgers Eqn. $F(U) = U^2/2$.

Numerical & Exact Solution

Numerical solution

DGM in 2D

2D scalar conservation law

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{\mathcal{F}}(U) = S(U), \quad \text{in} \quad \Omega \times (0, T); \, \forall (x, y) \in \Omega$$

where U=U(x,y,t), $\nabla\equiv(\partial/\partial x,\partial/\partial y)$, $\vec{\mathcal{F}}=(F,G)$ is the flux function, and S is the source term.

• Domain: The domain Ω is partitioned into $N_x \times N_y$ rectangular non-overlapping elements Ω_{ij} such that

$$\Omega_{ij} = \{(x,y) \mid x \in [x_{i-1/2}, x_{i+1/2}], y \in [y_{j-1/2}, y_{j+1/2}]\},$$

for $i = 1, 2, \dots, N_x$; $j = 1, 2, \dots, N_y$.

Weak Galerkin Formulation

- Consider an element Ω_{ij} and an approximate solution U_h in the finite dimensional vector space $\mathcal{V}_h(\Omega)$.
- Multiplication of the basic equation by a test function $\varphi_h \in \mathcal{V}_h$ and integration over the element Ω_{ij} by parts, results in a weak Galerkin formulation of the problem:

$$\frac{\partial}{\partial t} \int_{\Omega_{ij}} U_h \, \varphi_h \, d\Omega - \int_{\Omega_{ij}} \vec{\mathcal{F}}(U_h) \cdot \nabla \varphi_h \, d\Omega
+ \int_{\partial \Omega_{ij}} \vec{\mathcal{F}}(U_h) \cdot \vec{n} \, \varphi_h \, ds = \int_{\Omega_{ij}} S(U_h) \, \varphi_h d\Omega$$

where $\vec{\mathcal{F}}(U_h) \cdot \vec{n}$ is analytic flux and \vec{n} is the outward-facing unit normal vector on the element boundary $\partial \Omega_{ij}$.

DGM: Flux term

- Along the boundaries of an element $\partial \Omega_{ij}$, the function U_h is discontinuous.
- Therefore, the analytic flux $\mathcal{F}(U_h)\cdot\vec{n}$ must be replaced by a numerical flux $\widehat{\mathcal{F}}(U_h^-,U_h^+)$
- U_h^- and U_h^+ are the left and right limits of the discontinuous function U_h

After Num. Flux Operation

DGM: Numerical Flux

- Numerical flux resolves the discontinuity of the element edges and provides only mechanism by which adjacent element interact.
- A variety of numerical flux schemes are available for the Reimann problem (Cockburn & Shu, 2001).
- For simplicity, the Lax-Friedrichs numerical flux is used:

$$\widehat{\mathcal{F}}(U_h^-, U_h^+) = \frac{1}{2} \left[(\mathcal{F}(U_h^-) + \mathcal{F}(U_h^+)) \cdot \vec{n} - \alpha (U_h^+ - U_h^-) \right],$$

• For a system, α is the upper bound for the absolute value of eigenvalues of the flux Jacobian $\mathcal{F}'(U)$.

Discretization (Modal)

- Choose a modal (orthogonal) basis as a set of Legendre polynomials, $\mathcal{B} = \{P_{\ell}(\xi), \ell = 0, 1, \dots, N\}$
- Map $(x,y) \Rightarrow (\xi,\eta) \in [-1,1] \otimes [-1,1]$, reference element such that $\xi = 2(x-x_i)/\Delta x_i$, $\eta = 2(y-y_j)/\Delta y_j$.
- Expand approximate solution U_{ij} and test function in terms of tensor-product functions from the basis set.

$$U_{ij}(\xi, \eta, t) = \sum_{\ell=0}^{N} \sum_{m=0}^{N} \hat{U}_{ij\ell m}(t) P_{\ell}(\xi) P_{m}(\eta),$$
 where

$$\hat{U}_{ij\ell m}(t) = \frac{(2\ell+1)(2m+1)}{4} \int_{-1}^{1} \int_{-1}^{1} U(\xi,\eta,t) P_{\ell}(\xi) P_{m}(\eta) d\xi d\eta.$$

Discretization (Nodal)

• The nodal basis set is constructed using a tensor-product of Lagrange-Legendre polynomials $(h_i(\xi))$ with roots at Gauss-Lobatto quadrature points.

$$U_{ij}(\xi,\eta) = \sum_{i=0}^{N} \sum_{j=0}^{N} U_{ij} h_i(\xi) h_j(\eta) \quad \text{for} \quad -1 \le \xi, \eta \le 1,$$

$$h_i(\xi) = \frac{(\xi^2 - 1) P'_N(\xi)}{N(N+1) P_N(\xi_i) (\xi - \xi_i)}.$$

Final form for the modal discretization

$$\frac{d}{dt}\hat{U}_{ij\ell m}(t) = \frac{(2\ell+1)(2m+1)}{2\Delta x_i \Delta y_i} \left[I_{Grad} + I_{Flux} + I_{Source} \right],$$

Time integration

- Evaluate the integrals (RHS) using GLL quadrature rule.
- Solve the ODE

$$\frac{d}{dt}U = L(U) \quad \text{in} \quad (0, T)$$

A third-order total variation diminishing (TVD) Runge-Kutta scheme (same as in the case of 1D) without a filter or limiter.

2D Cartesian: Solid-body rotation test

Gaussian-Hill:
$$U(x,y) = a_0 \exp(-r^2)$$
, $r^2 = (x - \pi/2)^2 + y^2$, $\Omega \equiv [-\pi, \pi]^2$ (400 elements, $k = 3$)

Initial solution

Numerical solution after one rotation

2D Cartesian: Convergence

Solid-body rotation of a Gaussian-Hill

2D: Limiter Option

Montonic option for DGM: WENO limiter

Non-smooth Vortex on a $(1600 \times 4 \times 4)$ grid. Exact vs Numerical solutions, after 3 time units

DGM: Spherical Geometry

The sphere is decomposed into 6 identical regions, using the central (gnomonic) projection:

$$x = a \tan \lambda$$
, $y = a \tan \theta \sec \lambda$, $2a$ is the cube side.

- Local coordinate systems are free of singularities
- have identical metric terms
- creates a non-orthogonal curvilinear coordinate system
- Metric tensor of the transformation is defined as $G_{ij} \equiv \mathbf{a}_i \cdot \mathbf{a}_j, i, j \in \{1, 2\}.$
- The components of the covariant vectors (u_i) and the contravariant vectors (u^i) are related through:

$$u_i = G_{ij}u^j, u^i = G^{ij}u_j, \quad G^{ij} = (G_{ij})^{-1}$$

Equiangular Projection

Central angles $x^1, x^2 \in [-\pi/4, \pi/4]$ are the independent variables. Let $\rho^2 = 1 + \tan^2 x^1 + \tan^2 x^2$, metric tensor

$$G_{ij} = \frac{R^2}{\rho^4 \cos^2 x^1 \cos^2 x^2} \begin{bmatrix} 1 + \tan^2 x^1 & -\tan x^1 \tan x^2 \\ -\tan x^1 \tan x^2 & 1 + \tan^2 x^2 \end{bmatrix}$$

Transform: Cube ⇔ Sphere

- The spherical velocity vector $\mathbf{v}(\lambda, \theta) = (u, v)$, can be expressed in terms of covariant vector $u_1 = \mathbf{v} \cdot \mathbf{a}_1$, $u_2 = \mathbf{v} \cdot \mathbf{a}_2$, $\Rightarrow \mathbf{v} = u^1 \mathbf{a}_1 + u^2 \mathbf{a}_2$.
- Metric tensor of the transformation is defined by

$$G_{ij} = A^T A; \quad A = \begin{bmatrix} R\cos\theta \,\partial\lambda/\partial x^1 & R\cos\theta \,\partial\lambda/\partial x^2 \\ R\,\partial\theta/\partial x^1 & R\,\partial\theta/\partial x^2 \end{bmatrix}$$

• The matrix A can be used for transforming spherical velocity (u, v) to the cubed-sphere velocity vectors.

$$A \left[\begin{array}{c} u^1 \\ u^2 \end{array} \right] = \left[\begin{array}{c} u \\ v \end{array} \right]$$

SWE on the Cubed-Sphere

In curvilinear coordinates, the continuity and momentum equations for the flux form shallow water system can be written as follows (Sadourny 1972; Rancic et al. 1996; Nair et al. 2005 (MWR)):

$$\frac{\partial}{\partial t}(\sqrt{G}h) + \frac{\partial}{\partial x^{1}}(\sqrt{G}u^{1}h) + \frac{\partial}{\partial x^{2}}(\sqrt{G}u^{2}h) = 0,$$

$$\frac{\partial u_{1}}{\partial t} + \frac{\partial}{\partial x^{1}}E = \sqrt{G}u^{2}(f+\zeta),$$

$$\frac{\partial u_{2}}{\partial t} + \frac{\partial}{\partial x^{2}}E = -\sqrt{G}u^{1}(f+\zeta),$$

where

$$G = \det(G_{ij}), E = \Phi + \frac{1}{2} (u_1 u^1 + u_2 u^2), \zeta = \frac{1}{\sqrt{G}} \left[\frac{\partial u_2}{\partial x^1} - \frac{\partial u_1}{\partial x^2} \right]$$

Flux form SWE

$$\frac{\partial}{\partial t}\mathbf{U} + \frac{\partial}{\partial x^1}\mathbf{F}_1(\mathbf{U}) + \frac{\partial}{\partial x^2}\mathbf{F}_2(\mathbf{U}) = \mathbf{S}(\mathbf{U})$$

where
$$\mathbf{U} = \begin{bmatrix} \sqrt{G}h, u_1, u_2 \end{bmatrix}^T$$
, $\mathbf{F}_1 = \begin{bmatrix} \sqrt{G}hu^1, E, 0 \end{bmatrix}^T$
 $\mathbf{F}_2 = \begin{bmatrix} \sqrt{G}hu^2, 0, E \end{bmatrix}^T$, $\mathbf{S} = \begin{bmatrix} 0, \sqrt{G}u^2(f+\zeta), -\sqrt{G}u^1(f+\zeta) \end{bmatrix}^T$.

- Each face of the cubed-sphere is partitioned into $N_e \times N_e$ rectangular non-overlapping elements Ω_{ij}
- Each element is mapped onto the reference element $[-1,1]\otimes[-1,1]$
- Total number of elements on the cubed sphere is $6 \times N_e \times N_e$.

Computational Domain

Cubed-Sphere ($N_e = 5$) with 8×8 GLL points

SWE test suite by Williamson et al. (1992, JCP).

Flux computation at cube edges

To compute the flux on the edge of the cubed-sphere, P_n , both the *left* and *right* components F_n^- and F_n^+ are required.

$$A_{l} \begin{bmatrix} F_{l}^{+} \\ G_{l}^{+} \end{bmatrix} = \begin{bmatrix} F_{s}^{+} \\ G_{s}^{+} \end{bmatrix}, \quad A_{n}^{-1} \begin{bmatrix} F_{s}^{+} \\ G_{s}^{+} \end{bmatrix} = \begin{bmatrix} F_{n}^{+} \\ G_{n}^{+} \end{bmatrix} \Rightarrow A_{n}^{-1} A_{l} \begin{bmatrix} F_{l}^{+} \\ G_{l}^{+} \end{bmatrix}.$$

SW Test-1

• Numerical Flux: Lax-Friedrichs; eigenvalues of $\mathcal{F}'(U)$

$$\alpha^{1} = \max(|u^{1}| + \sqrt{\Phi G^{11}}), \quad \alpha^{2} = \max(|u^{2}| + \sqrt{\Phi G^{22}})$$

SW Test case-1: Solid-body rotation of a cosine-bell ($\alpha = \pi/4$)

SW Test-1: Modal & Nodal

Modal vs Nodal

DGM vs SEM

SW Test-1: Movie

SW1 Movie

Deformational Flow

Idealized Cyclogenisis: (Doswell 1985; Nair et al. 1999).

$$\psi(\lambda', \theta', t) = 1 - \tanh\left[\frac{\rho'(\theta')}{\gamma}\sin(\lambda' - \omega' t)\right]$$

Max error is $\mathcal{O}(10^{-6})$.

Deformational Flow

Voretx Movie

SW Test-2: Geostrophic Flow

Steady state geostrophic flow ($\alpha = \pi/4$). Max height error is $\mathcal{O}(10^{-6})$ m.

SW Test-5: Flow over a mountain

Zonal flow over a mountain: $(864 \times 4 \times 4)$ grid, after 5 and 15 days of integration

SW5 Movie

SW5 Movie

SW Test-6: Rossby-Haurwitz Wave

 $(864 \times 4 \times 4)$ Grid.

SW6 Movie

SW6 Movie

Parallel Performance

- Strong Scaling: Hold total work constant, increase number of processes.
 - Expect to cut runtime in half by doubling process count.
 - In reality, computation time decreases but communication time remains approx. constant.
- Weak Scaling: Hold work per process constant, regardless of process count.
 - Expect runtime to remain constant, regardless of process count.
 - Since computation time remains constant, communication time has similar effect at all process counts.
- Primarily interested in strong scaling.

Performance - Hemisphere

Linux cluster with 64 DP nodes, Intel Xenon 2.4 GHz, 8 × 8 Dolphin torus

Note: 350 Mflop/Sec $\approx 14.5\%$ peak

Performance - Frost

■ IBM BG/L, 1024 DP nodes, 700 MHz PPC 440s, $8 \times 8 \times 16$ torus and tree

Note: 225 Mflop/Sec $\approx 8.0\%$ peak

Summary

- Discontinuous Galerkin Method (DGM) based flux form shallow water model has been developed on the cubed-sphere (Nair et al. 2005 (MWR))
- Both modal and nodal versions give almost identical results
- The DG model has been implemented in NCAR high-order method modeling (HOMME) frame work.
- Numerical results either comparable or better than a standard spectral element method and DG scheme exhibits exponential convergence for SW test case-2
- DG solutions of the SW test cases are much better than those of a spectral model (Jacob-Chien et al. 1995) for a given spatial resolution.

Summary

- For high-order spatial discretization, the solution do not exhibit spurious oscillation for the flow over a mountain test case.
- DG model conserves mass to machine precision. Conservation of total energy and enstrophy is better preserved than the existing finite-volume models.
- Initial scaling results are promising.
- Future work: Development of a 3D DGAM dynamical core, efficient time integration scheme, limiters, performance study on BG/L.

